Structures for $\mathrm{d}^{0} \mathrm{ML}_{6}$ and ML_{5} Complexes

Sung Kwon Kang, ${ }^{18}$ Huang Tang, ${ }^{16}$ and Thomas A. Albright ${ }^{*, 1 b}$
Contribution from the Departments of Chemistry, University of Houston, Texas 77204-5641, and Chungnam National University, Daejeon, 301-764 Korea. Received September 8, 1992

Abstract

A second-order Jahn-Teller argument is given to explain why certain $\mathrm{d}^{0} \mathrm{ML}_{6}$ and ML_{5} molecules will have geometries different from the octahedron and the trigonal bipyramid, respectively, as given by the VSEPR rules. Ab initio molecular orbital calculations were used to explore the potential energy surface for a variety of molecules. In the CrH_{6} system, 20 stationary points were located and six were selected for study using a number of basis sets and electron correlation methods. The global minimum appears to be a $C_{30}\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}$ isomer which $\operatorname{QCISD}(\mathrm{T})$ calculations put at being $165 \mathrm{kcal} / \mathrm{mol}$ more stable than the octahedral $\left(O_{h}\right)$ one. However, two other geometries of C_{30} symmetry, one greatly distorted from the octahedron and the other distorted from a trigonal prism, are also computed to lie at a low energy and could possibly become the ground state at a higher computational level. For WH_{6}, nine stationary points were located and either a C_{30} distorted trigonal prism or a novel C_{50} pentagonal pyramid was found to be $142 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{QCISD}(\mathrm{T})\right.$) more stable than O_{h}. In TaH_{5} and VH_{5}, the square pyramid ($C_{4 c}$) was found to be 20 and $27 \mathrm{kcal} / \mathrm{mol}$, respectively, more stable than the trigonal bipyramid ($D_{3 h}$). A new mechanism for apical-basal exchange in these molecules is proposed, wherein two trans basal hydrogens pivot around an axis orthogonal to the plane defined by the apical atom, Ta , and two remaining basal atoms. For WMe_{6} and TaMe_{5}, the ground-state structures are in very good agreement with gas-phase electron diffraction results. The trigonal prism is computed to be $83 \mathrm{kcal} / \mathrm{mol}$ more stable than the octahedron for WMe_{6} and the square pyramid $7.7 \mathrm{kcal} / \mathrm{mol}$ more stable than the trigonal bipyramid at the MP2 level. For $\mathrm{WF}_{6}, \mathrm{CrF}_{6}, \mathrm{VF}_{5}$, and $\mathrm{TaCl}_{5}, \mathrm{VSEPR}$ anticipated geometries were found to be more stable than other structural alternatives.

Introduction

The valence shell electron pair repulsion (VSEPR) model ${ }^{2}$ occupies a central position in structural chemistry. It has wide applicability, simplicity, and much predictive success. There have been occasional concerns about its theoretical underpinnings or quantitative details; ${ }^{2 c .3}$ however, we are aware of only three general instances where the VSEPR model does not yield correct results in qualitative terms. Reed, Schleyer, and Janoschek ${ }^{4}$ found $C_{2 v}$ structures to be more stable than T_{d} in the four-electron-pair ALi_{4} molecules, where $\mathrm{A}=\mathrm{Si}, \mathrm{Ge}$, and Sn . Marsden has also identified non-VSEPR structures for $\mathrm{PLi}_{5}, \mathrm{SLi}_{4}$ and $\mathrm{SLi}_{6}{ }^{5}$. In these cases, attractive interactions between the Li atoms have been highlighted. The second instance originates from the so-called "inert-pair effect". For example, $\mathrm{BrF}_{6}{ }^{-}$, with seven electron pairs, was found to possess an octahedral rather than a capped octahedral geometry. ${ }^{6}$ Likewise, $\mathrm{XeF}_{8}{ }^{2-}$, with nine electron pairs, is square antiprismatic rather than a tricapped trigonal prism. ${ }^{7}$ The final group contains certain $\mathrm{d}^{0} \mathrm{ML}_{n}$ transition-metal complexes, which are the subject of this manuscript. The central thesis here is that in special instances a small HOMO-LUMO gap will exist for a $\mathrm{d}^{0} \mathrm{ML}_{n}$ complex at the VSEPR mandated geometry. This signals a potential second-order Jahn-Teller distortion. ${ }^{8}$ The distortion will serve to mix the LUMO into the HOMO, stabilizing the latter. The HOMO-LUMO gap must be small since the stabilization afforded to the HOMO is inversely dependent upon this gap. There will always be other lower-lying, filled orbitals which are

[^0]destabilized along the distortion mode, and these serve as a braking force for the distortion. In a practical sense, a nonbonding metal d orbital is required for a low-lying LUMO. Furthermore, the surrounding ligands should possess little or no π-donating capacity which would serve to destabilize the LUMO. Likewise, the metal should not be too electropositive. A high-lying HOMO is obtained when the surrounding ligands are strong σ-donors. The metalligand bond should be reasonably covalent. An extreme ionic case simply reduces to a point charge on a sphere problem, for which a solution is given by the VSEPR approach. Lastly, for obvious steric reasons, the ligands must not be bulky. Previously, calculations revealed that a number of the two-electron-pair AX_{2} molecules, where $\mathrm{A}=\mathrm{Sr}$ and Ba and $\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I , are bent rather than linear. ${ }^{9}$ The three-electron-pair molecules $\mathrm{ScH}_{3}, \mathrm{TiH}_{3}{ }^{+}$, and $\mathrm{TiMe}_{3}{ }^{+}$were computed to be pyramidal rather than planar. ${ }^{10,11}$ In both cases, d orbital occupation increased upon distortion to the non-VSEPR geometry. This is precisely what one would expect from second-order Jahn-Teller arguments. Our original interest in this area was derived from the idea ${ }^{12}$ that several $\mathrm{d}^{0} \mathrm{ML}_{6}$ complexes ${ }^{13}$ were distorted not by the formation of an agostic bond which occupied a seventh coordination site but rather by an intrinsic potential to distort from the octahedron. We initially ${ }^{14}$ examined octahedral versus trigonal prismatic geometries for $\mathrm{TiH}_{6}{ }^{2-}, \mathrm{CrH}_{6}$, and CrF_{6}. In this publication, the full potential energy surfaces shall be examined for a variety of $\mathrm{d}^{0} \mathrm{ML}_{6}$ and ML_{5} molecules using ab initio molecular orbital theory.

Computational Methods

All ab initio molecular orbital computations were carried out with the GAUSSIAN $82,{ }^{15}$ GAUSSIAN $90,{ }^{16}$ and GAMESS ${ }^{17}$ packages. Three
(9) (a) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. J. Am. Chem. Soc. 1991, M3, 6012. (b) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. J. Chem. Phys. 1991, 94, 1360. (c) See also: Kaupp, M.; Schleyer, P. v. R. J. Phys. Chem. 1992, 96, 7316. Kaupp. M.; Charkin, O. P.; Schleyer, P. v. R. Organometallics 1992, 11, 2765.
(10) Jolly, C. A.; Marynick, D. S. Inorg. Chem. 1989, 28, 2893.
(11) Musaev, D. G.; Charkin, O. P. Koordinat. Khim. 1989, 15, 161. (12) Demolliens, A.; Jean, Y.: Eisenstein. O. Organometallics 1986, 5, 1457.
(13) For other computational studies on these molecules, see: Koga, N.; Obara, S.; Morokuma, K. J. Am. Chem. Soc. 1984, 106, 4625: J. Organomet Chem. 1984, 270, C33.
(14) Kang, S. K.: Albright. T. A.: Eisenstein. P. Inorg. Chem. 1989, 28, 1611.

Figure 1. Orbital correlation diagram for the distortion of a $\mathrm{d}^{0} \mathrm{MH}_{6}$ molecule from the O_{h} to $D_{3 n}$ to $C_{3 v}$ geometries.
all-electron basis sets were used for the chromium and vanadium complexes. The first, referred to as basis I, was of the form ($4333 / 433 / 31$) for the metal atoms and has been described elsewhere. ${ }^{14}$ Basically, it is of double- ζ quality for the metal d region and single- ζ elsewhere. Standard $4-31 \mathrm{G}$ basts sets for hydrogen and fluorine ${ }^{18}$ were used in conjunction with it. Basis II was derived from the Wachters expansion of the form $(62111131 / 511231 / 411)$ for the metal atoms. ${ }^{14}$ Here the metal d orbitals are triple- ζ and all others are double- ζ. The hydrogens employed a $6-311 \mathrm{G}^{* *}$ basis, ${ }^{19}$ and the Dunning [5s $/ 3 \mathrm{p}$] basis ${ }^{20}$ was used for fluorine. In basis III an f function with an exponent of 1.0582 (for chromium $)^{21}$ was added to metal basis II, and the associated ligands used the same basis sets as those in basis II. For the tungsten and tantalum complexes, a relativistic effective core potential ${ }^{22 a}$ was used for the $1 s$ through 4 d electrons. The 5 s through 6 p electrons were explicitly treated with an associated double- ζ basis. ${ }^{22 a}$ We should mention that early pilot calculations on WF_{6} were carried out with an effective core potential ${ }^{23}$ that included the 5 s and 5 p electrons. At the octahedral geometry, the W-F distances were found to be $0.175 \AA$ too long, and the trigonal prismatic geometry was found to be more stable than the octahedral one, contrary to experiment (vide infra). The hydrogen and fluorine 4-31G basis was again used for the ligands, and in TaCl_{5} a standard effective
(15) Binkley, J. S.; Frisch, M.; Raghavachari, K.; Fluder, E.; Seeger, R.; Pople. J. A. Gaussian 82; Carnegie-Mellon Publishing Unit: Pittsburgh. PA, 1982.
(16) Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.: Schlegel. H. B.: Raghavachari. K.; Robb, M. A.; Binkley, J. S.; Gonzalez, C.: Defrees, D. J.; Fox, D. J.; Whiteside. R. A.; Saeger. R.; Melius, C. F.; Baker. J.: Martin, R. L.: Kahn, L. R.; Stewart, J. J. P.: Topiol, S.: Pople, J. A Gaussian 90; Gaussian, Inc.: Pittsburgh, PA, 1990.
(17) Schmidt, M. W.: Baldridge, K. K.; Boatz, J. A.: Jensen. J. H.; Koeski, S.; Gordon, M. S.: Nguyen. K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. 1990, 10, 52.
(18) Ditchfield. R.; Hehre, W. A.: Pople, J. A. J. Chem. Phys. 1971, 54, 724.
(19) Krishman, R.; Binkley, J. S.: Seeger. R.: Pople, J. A. J. Chem. Phys. 1980, 72, 650.
(20) Dunning, T. H., Jr. J. Chem. Phys. 1970, 53, 2823.
(21) Stewart, R. F. J. Chem. Phys. 1970, 52, 431. Walch. S. P.: Bauschlicher, C. W., Jr. Chem. Phys. Lett. 1984. 105. 171. (22) (a) Hay, P. J.: Wadt, W. R. J. Chem. Phys. 1985. 82. 299. (b) Wadt. W. R.: Hay. P. J. Ibid. 1985. 82, 284.
(23) (a) Hay, P. J.; Wadt. W . R. J. Chem. Phys. 1985. 82. 270. (b) Other workers have noted related problems, see: Pacios. L. F.: Olcina. V. B. J. Chem. Phys. 1991, 95.441 and references therein.
core potential and associated basis ${ }^{22 b}$ were employed for Cl . For WMe_{6} and TaMe_{5}, a 3-21G basis was used for carbon ${ }^{24}$ and an STO-3G basis for hydrogen. ${ }^{25}$

All optimized geometries and all total energies are reported in the supplementary material. Numerical harmonic frequencies for the stationary points at the MP2 level for $\mathrm{CrH}_{6}, \mathrm{WH}_{6}, \mathrm{TaH}_{5}$, and VH_{5} as well as frequencies at the Hartree-Fock (HF) level for VF_{5} and TaCl_{5} are also given as supplementary material. Optimizations of $\mathrm{CrH}_{6}, \mathrm{VH}_{5}, \mathrm{CrF}_{6}$, and TaH_{5} were carried out at the MP2 level. The MP2 energies then correspond to all electrons being correlated. For $\mathrm{CrH}_{6}, \mathrm{WH}_{6}, \mathrm{TaH}_{5}$, $\mathrm{VH}_{5}, \mathrm{TaCl}_{5}$, and Cr_{6}, an extensive study was undertaken for the effect of electron correlation on the relative stability of selected geometrical isomers. The correlated methods included full MP4, ${ }^{27}$ MP4(SDQ) (where triple substitutions were not included), CCD^{28} (coupled cluster theory with double substitutions), ST4CCD ${ }^{29}$ (evaluation of the single and triple substitutions to fourth order using the CCD wave function), QCISD 30 (quadratic CI with single and double substitutions), and QCISD(T) (evaluation of the triple substitutions). Pilot calculations were carried out with and without the frozen core approximation using these techniques. Only very small variations in the relative energies were found. All of the energies reported are those using the frozen core approximation. This is also true for the MP2 calculations using bases II and III.

$\mathbf{C r H}_{6}$ and $\mathbf{W H}_{6}$ Molecules

For a ML_{6} complex with a d^{0} electron count at the metal, the VSEPR rules clearly stipulate the preferred geometry to be octahedral. ${ }^{2}$ This has also been demonstrated to be the optimal one on steric grounds by several force field calculations. ${ }^{31}$ As men-
(24) Binkley, J. S.: Pople. J. A.: Hehre. W. J. J. Am. Chem. Soc. 1980, 102, 939 .
(25) Hehre, W. J.; Stewart. R. F.: Pople, J. A. J. Chem. Phys. 1969. 51, 2657.
(26) Möller, C.; Plesset. M. S. Phys. Rev. 1934. $46,618$.
(27) Krishman. R.: Frisch. M. J.: Pople, J. A. J. Chem. Phys. 1980. 72, 4244.
(28) Pople, J. A.; Krishman. R.: Schlegel, H. B.: Binkley. J. S. Int. J. Quantum Chem. 1978. 14. 545.
(29) Raghavachari, K. J. Chem. Phys. 1985. 82. 4607.
(30) Pople. J. A.; Head-Gordon. M.: Raghavachari, K. J. Chem. Phys. 1987, 87. 5968.
(31) (a) Wales, D. J. J. Chem. Soc.. Faraday Trans. 1990. 86. 3505. (b) McDowell. H. K.: Chiu. H.-L.: Geldard, J. F. Inorg. Chem. 1988, 27. 1674.
tioned in the Introduction, an alternative structure can be obtained when the auxiliary ligands are strong σ-donors with little or no π-donating capacity and are not too sterically bulky. The hydride ligand matches these criteria beautifully and, of course, is the least computationally demanding type. The molecules we initially selected for study, CrH_{6} and $\mathrm{WH}_{6},{ }^{32}$ are hypothetical ones. In fact, no $\mathrm{d}^{0} \mathrm{MH}_{6}$ molecule has been reported, although $\mathrm{d}^{6} \mathrm{FeH}_{6}{ }^{4-}$ and $\mathrm{RuD}_{6}{ }^{4-}$ are known ${ }^{33}$ along with several $\mathrm{d}^{0} \mathrm{MH}_{6}\left(\mathrm{PR}_{3}\right)_{3}$ exa mples. ${ }^{34}$ We wish to present first a generalized description of the $\mathrm{d}^{0} \mathrm{MH}_{6}$ situation before specific computational details are given.

The molecular orbital description for a $\mathrm{d}^{0} \mathrm{MH}_{6}$ molecules at the octahedral geometry is shown on the left side of Figure 1. A small gap between the HOMO ($\mathrm{t}_{1 \mathrm{u}}$) and LUMO ($\mathrm{t}_{2 \mathrm{~g}}$) implies a potential second-order Jahn-Teller driving force for distortions with normal modes of $\mathrm{t}_{2 u}$ and $\mathrm{t}_{1 u}$ symmetry. In CrH_{6} at the optimized O_{h} geometry (vide infra), the frequencies for the $t_{2 u}$ and t_{14} normal modes are computed to be imaginary at the MP2 level ($2021 i$ and $1891 \mathrm{i} \mathrm{cm}^{-1}$, respectively). A $\mathrm{t}_{2 \mathrm{u}}$ distortion involves rotation about one 3 -fold axis to yield a trigonal prismatic $D_{3 h}$ structure. As indicated in Figure 1, two members of the empty $\mathrm{t}_{2 g}$ set mix into and stabilize two components of the filled $\mathrm{t}_{1 \mathrm{l}}$ set. Since $t_{2 g}$ is metal d localized, the two stabilized molecular orbitals, now of é symmetry, become hybridized at the metal toward the hydrogens. Notice that one component of the t_{14} set $\left(a_{2}{ }^{\prime \prime}\right)$ and one component of $t_{2 g}\left(a_{1}{ }^{\prime}\right)$ are not affected by this distortion. It is then easy to see why many $\mathrm{d}^{2} \mathrm{ML}_{6}$ complexes, where $\mathrm{a}_{1}{ }^{\prime}$ is filled, have structures along the $O_{h} \rightarrow D_{3 h}$ path. ${ }^{35}$ But for a d ${ }^{0}$ molecule one should be able to achieve further stabilization by the pyramidalization mode of $a_{2}{ }^{\prime \prime}$ symmetry, as shown on the right side of Figure 1. Empty $a_{1}{ }^{\prime}$ then mixes into and stabilizes filled $a_{2}{ }^{\prime \prime}$. For CrH_{6} at the optimized $D_{3 h}$ geometry, there is, in fact, an imaginary a $\mathrm{a}_{2}{ }^{\prime \prime}$ mode of $480 \mathrm{i} \mathrm{cm}^{-1}$. The $O_{h} \rightarrow D_{3 h} \rightarrow C_{3 v}$ path is only one of many distortions that should be stabilizing for a d^{0} MH_{6} complex. For example, pyramidalization about one of the 3 -fold faces of the octahedron directly mixes all three components of t_{28} into the $t_{1 u}$ set. A $C_{2 v}$ distortion couples one member of $t_{2 g}$ with $\mathrm{t}_{1 \mathrm{u}}{ }^{12}$ In a local sense, the distortions in these situations (and many others) lead to increased d character for the metal-hydrogen bonds. This creates bonds which are more covalent, stronger, and shorter, as has been recognized in other contexts. ${ }^{36}$ Figure 1 also demonstrates that the e_{g} set at the octahedral geometry is continuously destabilized on going from $O_{h} \rightarrow D_{3 h} \rightarrow C_{3 c}$. Overlap between the metal d and hydrogen sorbitals is decreased along the distortion path for these two molecular orbitals. Thus, the amount of stabilization afforded to the $t_{1 u}$ set is a critical factor. If the HOMO-LUMO gap is too large, then the distortion will not be energetically favorable. We will return to this point later. We also need to emphasize that the application of the Jahn-Teller method merely indicates a potential for distortion. It does not follow that the ground state for a molecule can be directly found by following one normal mode of distortion. The resulting stationary point may well be unstable with respect to further distortions.

Our initial optimizations of CrH_{6} were at the HF level and led to a preponderance of $\eta^{2}-\mathrm{H}_{2}$ and clustered-type structures. Previous work ${ }^{37}$ has demonstrated that at the HF level $\eta^{2}-\mathrm{H}_{2}$ structures are inordinately stabilized over metal dihydride isomers, in contrast to MP2 or other correlated techniques. What is more worrisome in this regard is that HF theory tends to give $\mathrm{H}-\mathrm{H}$ distances that are systematically too short and $\mathrm{M}-\mathrm{H}$ distances that are too long, and this deficiency is removed at the MP2 level. Therefore, all optimization was carried out using basis I at the

[^1]Scheme I

Table I. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) and Number of Imaginary Frequencies for CrH_{6}

structure	basis I		basis II	
	MP2	freq ${ }^{\text {a }}$	MP2	MP4
1, O_{h}	181	6	186	196
2, $D_{3 h}$	46	3	53	39
3, C_{30}	26	0	27	22
4, C_{1}	14	0	14	17
5, C_{s}	17	1	16	17
6, $C_{3 v}$	0	0	0	3
7, $C_{2 v}$	24	1	25	24
8, $C_{2 v}$	30	2	33	39
9, C_{20}	37	3		
10, $C_{2 v}$	42	0		
11, $C_{s o}$	18	0	23	7
12, $C_{5 v}$	3	0	4	0
13. $C_{3 v}$	32	1	22	36
14, $C_{3 v}$	16	0	5	24
15, C_{s}	17	0	12	24
16, C_{20}	48	2		
17, C_{2}	45	0		
18, C_{s}	43	2		
19, $C_{2 v}$	31	1	22	41
20, C_{s}	25	0	23	34

${ }^{a}$ The number of imaginary frequencies.
MP2 level, and each stationary point was categorized by a frequency analysis at this level. The stationary points found are listed in Scheme I. The relative energies ($\mathrm{kcal} / \mathrm{mol}$) at the MP2 and MP4 levels for basis I and basis II, along with the number of imaginary frequencies for each structure, are listed in Table I. The arrows in Scheme I do not indicate, in general, specific reaction paths, which were not followed; rather, they illustrate sequential deformations. For convenience, an asterisk by a structure indicates the presence of one or more imaginary fre-
quencies. Structures 1, 2, and $\mathbf{3}$ follow the deformation path presented in Figure 1. The stabilization energy on going from $O_{h}(1)$ to $D_{3 h}$ (2) is immense- $159 \mathrm{kcal} / \mathrm{mol}$ at the MP4 level using basis II-and that corresponding to the $D_{3 h}$ (2) to $C_{3 c}$ (3) sequence was found to be an additional $17 \mathrm{kcal} / \mathrm{mol}$. Structures 5 and 6 can be viewed simply as resulting from pyramidalization about a 3 -fold face of the octahedron or alternatively as a rotation of three hydrogens about the 3 -fold axis from 3 to, ultimately, 6. At the MP4 (basis II) level, 6 is stabilized by an additional 14 $\mathrm{kcal} / \mathrm{mol}$ relative to 3. In it, one set of three hydrogens makes an angle of 40.8°, while in the other set the angle is 77.8° with respect to the 3 -fold axis. All six hydrogen atoms reside on one side of the chromium atom! The closest $\mathrm{H} \cdot . . \mathrm{H}$ contact between the two sets was still $1.61 \AA$, well outside any $\eta^{2}-\mathrm{H}_{2}$ type structure. The corresponding $\mathrm{H} \cdot \mathrm{H}$ overlap population was computed (from the HF, basis I wave function) to be 0.058 . While the overlap population is much smaller than that for an $\eta^{2}-\mathrm{H}_{2}$ species (vide infra), it is still positive and not the sizable negative quantity expected for a typical nonbonded contact. Structures 7-10 represent $C_{2 v}$ distorted structures; all were found to lie very high in energy relative to 6 , for example. Two unique stationary points, 11 and 12, were found when $C_{5 v}$ symmetries were considered. ${ }^{38}$ 12 was computed to be at a lower energy. Here, the apical $\mathrm{H}-\mathrm{Cr}$-equatorial H angle is 64.3°. The $\mathrm{H} \cdots \mathrm{H}$ distances between the apical and equatorial hydrogens were $1.67 \AA$, with an overlap population of -0.011 (basis I). The H... H distances between adjacent equatorial hydrogens were $1.56 \AA$, with overlap populations of 0.032 . Force field calculations interestingly predict that an ML_{6} structure akin to $\mathbf{1 2}$ is the global minimum when a three-body potential with a sizable positive coefficient is included. ${ }^{31 a}$ In the geometries of 6,11 , and 12 especially, the hydrogens tend to cluster. There appear to be weak attractive forces between the hydrogens. Whether or not this feature remains when the structures are optimized with a more sophisticated electron correlation treatment will be the subject of future study. From work on the molecules in this study and elsewhere, we do know that HF optimized geometries produce structures that tend to have shorter H$\cdots \mathrm{H}$ contacts.

For octahedral geometry 1 the optimal $\mathrm{Cr}-\mathrm{H}$ distance was computed to be $1.69 \AA$. This diminishes to $1.58 \AA$ in 2 and 1.52 and $1.55 \AA$ in 3 . This nicely corresponds to the arguments given previously that as the distortion proceeds from 1 to 2 to 3 the $\mathrm{Cr}-\mathrm{H}$ bonds develop more d character at chromium and this, in turn, makes them shorter and stronger. Even in the crowded structure of 6 , the $\mathrm{Cr}-\mathrm{H}$ distances were found to be 1.58 and $1.57 \AA$, and in 12, the equatorial distances were $1.56 \AA$ while the axial one was $1.58 \AA$.

Structures 1-12 in Scheme I represent "classical" structures where, in a localized sense, one might think that there exist six two-center, two-electron bonds between chromium and hydrogen. Structures 13-20 contain one or more $\eta^{2}-\mathrm{H}_{2}$ ligands coordinated to the metal. As mentioned previously, $\eta^{2}-\mathrm{H}_{2}$ structures were found to be pervasive on the potential energy surface of CrH_{6}. Optimizations of all trigonal bipyramidal-based $\left(\eta^{2}-\mathrm{H}_{2}\right) \mathrm{CrH}_{4}$ structures produced only one stationary point, 20, where the $\eta^{2}-\mathrm{H}_{2}$ structure remained intact. $\operatorname{Bis}\left(\eta^{2}-\mathrm{H}_{2}\right)$ tetrahedral stationary points are given by 15-19. Notice that these are all at high relative energies from Table I. For reference purposes, and these are typical values, the $\mathrm{H}-\mathrm{H}$ distances in 20 and 17 were 0.83 and 0.80 \AA A, respectively. The corresponding $\mathrm{H}-\mathrm{H}$ overlap populations (basis I) were 0.489 (20) and 0.508 (17). Two $\operatorname{tris}\left(\eta^{2}-\mathrm{H}_{2}\right)$ structures were found, 13 and 14 ; both have $C_{3 v}$ symmetry. 14 was computed to be $12 \mathrm{kcal} / \mathrm{mol}$ more stable than 13 at the MP4 level using basis II. Structure $\mathbf{1 3}$ had one imaginary frequency of a_{2} symmetry, corresponding to rotation about each $\mathrm{Cr}-\mathrm{H}_{2}$ axis to yield 14. The structure of 14 deserves special comment. The $\mathrm{H}-\mathrm{H}$ distance for the η^{2}-hydrogens was $1.04 \AA$. This is considerably longer than that for any other $\eta^{2}-\mathrm{H}_{2}$ structure. The $\mathrm{H}-\mathrm{H}$ overlap population of 0.164 (basis I) is also much smaller than

Table II. Relative Energies (kcal/mol) for Several CrH_{6} Structures

		structure					
method	basis	$\left(\mathbf{O}_{h}\right)$	$\left(C_{3 v}\right)$	$\left(C_{1}\right)$	$\left(C_{3 v}\right)$	$\left(C_{5 v}\right)$	$\left(C_{3 v}\right)$
HF	I	138	38	57	45	60	0
	II	143	43	65	53	68	0
	III	140	42	64	53	68	0
MP2	I	181	26	14	0	3	15
	II	186	27	14	0	4	5
	III	191	28	32	0	3	5
MP4	II	196	22	17	3	0	24
	III	202	22	32	4	0	26
CCD	I	143	20	29	9	19	0
	II	153	25	36	17	27	0
	III	157	27	38	18	28	0
ST4CCD	I	144	7	19	2	9	0
	II	158	14	26	10	16	0
	III	162	15	27	10	17	0
QCISD	I	163	0	22	4	7	13
	II	166	0	21	4	8	2
	III	171	0	22	5	8	4
QCISD(T)	I	146	0	19	0	9	2
	II	161	8	26	8	17	0
	III	165	10	32	10	20	0

for any of the other η^{2} complexes. It is clear that back-donation to $\mathrm{H}_{2} \sigma^{*}$ is very strong in this structure. The $\mathrm{H} \cdots \mathrm{H}$ distance between H_{2} units was found to be $1.77 \AA$. What is surprising is the computed $\mathrm{H} \cdots \mathrm{H}$ overlap population of 0.066 (basis I). This value is larger than that found for any other "nonbonded" pair. The implication is that there is some interaction between the H_{2} units. This is not an artifact of the basis set on hydrogen. Three H_{2} units (with an optimal $\mathrm{H}-\mathrm{H}$ distance of $0.738 \AA$) were placed in a $D_{3 h}$ arrangement. Fixing the nonbonded $\mathrm{H} \cdots \mathrm{H}$ distance to be $1.77 \AA$ required $11.4 \mathrm{kcal} / \mathrm{mol}$ using basis II at the MP4 level. ${ }^{39}$ This situation can also be viewed as originating from some, although certainly incomplete, delocation in the H_{6} unit as a whole. We shall explore this topic fully for $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}$ and other molecules elsewhere.

Certainly there are other stationary points on the potential energy surface of CrH_{6}. For example, there is probably a transition state with $C_{5 v}$ symmetry that links structure 11 by pyramidalization to 12. From the relative energies in Table I, it would appear that either structure 6 or $\mathbf{1 2}$ represents the ground-state minimum. Notice that structure 14 at the MP2 level with basis set II is also at a low relative energy. These three structures, along with 1,3, and 4, were selected for further study by augmentation of f functions to Cr in basis II (yielding basis III) and the utilization of other correlation treatments. The results are listed in Table II along with the HF relative energies. Recall that all structures have been optimized at the MP2 level with basis I and that all structures are computed to be minima on the potential energy surface with the exception of the octahedral structure (1). Our thought was that the addition of f functions might stabilize clustered structures like 6, 12, and 14. Inspection of Table II shows that the relative energies on going from basis II and basis III do not change appreciably. In fact, there is generally not much difference between basis I and basis II, although there are a few exceptions (e.g., structures 13 and 19 at the MP2 level in Table I along with 14 at the MP2 and QCISD levels in Table II). Unfortunately, this is not the case when the correlation treatments are compared.

To begin the discussion, notice from Table II that at the HF level the relative energy of $\mathrm{O}_{h} \mathrm{CrH}_{6}$ is still extraordinarily high. However, the energy of $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}, 14$, and all $\eta^{2}-\mathrm{H}_{2}$ species are put at much too low a relative energy. In other words, and we have found this to be true for other molecules, ${ }^{37} \mathrm{HF}$ theory greatly underestimates the stability of two metal-hydride bonds relative to a metal- $\left(\eta^{2}-\mathrm{H}_{2}\right)$ three-center, two-electron bond and a localized lone pair in a d orbital at the metal. On the other hand, MP2
(38) $C_{6 v}$ and $D_{6 h}$ structures using basis 1 were found to lie at much higher energies and are not reported here.
(39) This does not include basis set superposition error which should be small wilh the $6-311 \mathrm{G}^{* *}$ basis.

Figure 2. Potential energy curves for dissociation of one H_{2} unit from $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}, 14$.
calculations do overestimate the stability of "classical" metal hydrides, on the basis of comparisons to experimentally determined relative energies, ${ }^{37}$ and we suspect that this is also the case here. Unfortunately, going to the MP4 level simply accentuates this tendency. Notice from Table I that the relative energies of 13, 14, 15, 19, and 20 consistently increase upon going from the MP2 to MP4 treatments. The CCD and ST4CCD treatments unambiguously point to the $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}$ structure (14) as being the most stable. At the QCISD level, 3, 6, and 14 appear to be viable contenders for the ground-state minimum, with 12 not too far away. Inclusion of triple substitutions in the QCISD framework again points to 14 as the ground-state minimum. This does not appear to be a multireference problem. Two sets of pilot calculations were carried out on 1 and 6. CASSCF calculations with basis I were carried out using the three highest occupied orbitals and three virtual levels (in 6 they are of $a_{1}+e$ symmetry; in 1 , of e_{g} and $a_{1 g}$ symmetry). The energy of 6 was found to be 140 $\mathrm{kcal} / \mathrm{mol}$ lower than that of 1 . Importantly, the HF determinant had coefficients of 0.92 and 0.93 for 1 and 6 , respectively. The problem here is that, at least in 1 , the active virtual space must be very carefully chosen. For example, using the three lowest virtual levels of $t_{2 g}$ symmetry produces a solution for 1 which is $16 \mathrm{kcal} / \mathrm{mol}$ higher in energy. Thus, for a general treatment which puts structures like 6, 12, and 14 on equal footing, a CASSCF approach necessitates the utilization of all six filled orbitals (with 12 electrons) and a large virtual active space. This is computationally very demanding. Using the six filled and the lowest 12 virtual orbitals as the active space, a MCSCF wavefunction for 1 and 6 was constructed for all single and double substitutions. The HF determinants had a coefficient of 0.93 for 1 and 6 , with 6 lying $134 \mathrm{kcal} / \mathrm{mol}$ lower in energy. What is clear from Table II is that the C_{1} structure 4 is not likely to be the lowest-energy minimum and that the VSEPR mandated octahedral structure is, in fact, by far the highest-energy structure. In conclusion, it would appear that $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}(14)$ is the lowest-energy species from our calculations. The two other $C_{3 v}$ structures, 3 and 6, may, in fact, be viable contenders at higher computational levels. In the introduction to this section we discussed how the three

Scheme II

Table III. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) and Number of Imaginary Frequencies for WH_{6}

structure	HF	MP2	freq a	MP4(SDQ)	QCISD	QCISD(T)
$\mathbf{2 1}, O_{h}$	126	145	6	140	142	142
22, $D_{3 h}$	25	29	3	26	26	26
23, $C_{3 v}$	0	0	0	0	0	0
24, $C_{3 v}$	11	6	0	8	8	8
25, $C_{5 v}$	2	2	0	1	1	1
26, $C_{S v}$	22	14	0	16	16	16
27, $C_{2 v}$	24	25	1	25	25	25
$\mathbf{2 8}, C_{2 v}$	35	63	2	61	59	60
29, $C_{2 v}$	25	48	2	46	46	46

${ }^{a}$ The number of imaginary frequencies.
members of empty $t_{2 g}$ at the octahedral geometry mix in and stabilize the filled $t_{l u}$ set upon distortion to structures $\mathbf{3}$ and 6 . Notice that the geometrical motion required for going from 6 to 14 is rather slight; maximal use of d orbitals for bonding in 14 is retained.
The low energy of $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}$ (14) worried us in that it might lead to dissociation of one or more H_{2} units. The electronic state for CrH_{4} has been found to be ${ }^{3} \mathrm{~A}_{2}$ by other workers, ${ }^{40 a}$ and, thus, dissociation of one H_{2} unit would be spin-forbidden. Nonetheless, we carried out a test where one H_{2} unit was stretched from 14 by sequential degrees and the structure was reoptimized in C_{s} symmetry at the MP2 level using basis I. Each point was then recomputed with basis II at the MP2 and MP4 levels. The potential energy curves thus generated are displayed in Figure 2. For the final point computed in Figure 2, the $\mathrm{H}-\mathrm{H}$ distance for the H_{2} unit undergoing dissociation contracted to $0.80 \AA$ while the remaining H_{2} units elongated slightly (from $1.03 \AA$ in 14) to $1.06 \AA$. It is clear that at this level of theory, $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}$ represents a bound molecule.
The potential energy surface for WH_{6} was investigated via HF and MP2 optimizations. The stationary points found are illustrated in Scheme II, where an asterisk by a structure denotes a transition state or higher-order saddle point. The corresponding relative energies, along with the number of imaginary frequencies (at the MP2 level), are reported in Table III. The differences between HF and MP2 techniques both in terms of geometrical parameters and relative energies are quite modest, except for the two bis($\eta^{2}-\mathrm{H}_{2}$) species, 28 and 29, where the trends are identical to those presented previously for CrH_{6}.
(40) (a) Hood, D. M.; Pitzer, R. M.; Schaeffer, H. F., IIl J. Chem. Phys. 1979, 71, 705. (b) Shen, M.; Schaeffer, H. F., 1II; Partridge, H. J. Chem. Phys. 1993, 98, 508.

The energy stabilization predicted via the one-electron arguments in Figure 1 for the $O_{h} \mathbf{(2 1)} \rightarrow D_{3 h}$ (22) $\rightarrow C_{3 k}$ (23) distortion path is again nicely confirmed. The O_{h} isomer was found to be $142 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the $C_{30}, 23$, at the QCISD(T) level. The calculations at all levels of theory predict 23 to be the global minimum. As a result of the increased d orbital mixing in 23, the MP2 bond distances, on going from 21 to 23, decrease from 1.83 to 1.69 and $1.73 \AA$. Direct pyramidalization of 21 also yields another $C_{3 i}$ minimum, 24, which is slightly higher in energy than 23. There is somewhat less distortion in $\mathbf{2 4}$ compared to its CrH_{6} analog 6. Here, one set of three hydrogens makes an angle of 37.2° with respect to the 3 -fold rotation axis while the other set makes an angle of 93.9° at the MP2 level. Two $C_{5 v}$ structures, 25 and 26 , were also found with 25 lying only $1 \mathrm{kcal} / \mathrm{mol}$ above 23. Very recently Shen, Schaefer, and Partridge ${ }^{40 \mathrm{~b}}$ have carried out all-electron ab initio calculations of WH_{6} at the MP2, CCSD, and modified coupled pair functional (MCPF) levels. Their optimized structures for 21-25 and the relative energies are in very close agreement with our values. Three additional stationary points were found on the potential energy surface; however, their relative energies are much higher than those associated with 23-26. At the MCPF level with relativistic effects estimated using the Cowan-Griffin corrections (which are also employed in our effective core potentials), the authors in fact find that $\mathbf{2 5}$ is 0.4 $\mathrm{kcal} / \mathrm{mol}$ more stable than $23 .{ }^{40 \mathrm{~b}}$ We shall return to this point later. Only two $\eta^{2}-\mathrm{H}_{2}$ structures, 28 and 29 , were found on the potential energy surface. Furthermore, both lie at high energies relative to 23. All of the stationary points found for CrH_{6} were also investigated for WH_{6}. Specifically, $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{~W}$ structures, analogs of 13 and 14 (Scheme I), collapsed upon optimization to 23 and 24 , respectively. The lack of $\eta^{2}-\mathrm{H}_{2}$ structures, prevalent for CrH_{6}, can be viewed as a consequence of the observation ${ }^{41}$ that higher oxidation states are much more stable for the heavier transition-metal elements than for those of the first transition-metal series. ${ }^{42}$ Alternatively, it is well-known that the more diffuse 5d orbital, as opposed to a 3d orbital, overlaps to a greater extent with the hydrogen 1 s orbital. For example, Ohanessian and Goddard ${ }^{36 \mathrm{~b}}$ have found that the percentage of d character in the $\mathrm{M}-\mathrm{H}$ bond rises from 45% in CrH^{+}to 60% in WH^{+}. Thus, back-donation from a filled metal d orbital to $\mathrm{H}_{2} \sigma^{*}$ is expected to be larger for W compared with Cr . As a consequence, an $\left(\eta^{2}-\mathrm{H}_{2}\right) \mathrm{M}$ species will have an increased propensity to rearrange to a classical MH_{2} structure as one descends a column in the periodic table. ${ }^{43}$ In conclusion, either $C_{3 v} 23$ or $C_{5 v} 25$ is the global minimum; at all computational levels the energy difference between them is very small in both our and Shen, Shaefer, and Partridge's work. ${ }^{40 b}$ The Jahn-Teller arguments for the stability of $\mathbf{2 3}$ have been presented previously. For $\mathbf{2 5}$ (or 26) we note that symmetry-adapted linear combinations for the hydrogen sorbitals span the $a_{1}+e_{1}+e_{2}$ irreducible representations which are just those given by the metal d orbitals. Thus, d orbital bonding to the hydrides is beautifully maximized in structure 25.

Charging effects at the metal are very important in setting the energy differences. We have previously shown ${ }^{14}$ that at the HF level the O_{h} structure for $\mathrm{TiH}_{6}{ }^{2-}$ is more stable than $D_{3 h}{ }^{44-46}$ At

[^2]
Scheme III

the MP2 and MP4 levels, this ordering is reversed with $D_{3 h}$ being 3.2 and $9.2 \mathrm{kcal} / \mathrm{mol}$, respectively, more stable using basis II. Distortions toward $C_{3 c}, C_{2 k}$, etc., symmetry were explored in each structure. No additional stationary points were located. Certainly, Ti is more electropositive than Cr or W and the bonding in $\mathrm{TiH}_{6}{ }^{2-}$ is much more ionic than that for CrH_{6} and WH_{6}. Thus, in a one-electron sense the $\mathrm{t}_{2 \mathrm{~g}}$ set (Figure 1) for $\mathrm{TiH}_{6}{ }^{2-}$ at the octahedral geometry is expected to lie higher in energy in comparison to CrH_{6} and WH_{6}, and the energy potential associated with a second-order Jahn-Teller distortion is greatly diminished. In agreement with this are the recent $a b$ initio results of Chakin and co-workers, ${ }^{44}$ who found that the $O_{h} / D_{3 h}$ energy differences at the HF level lie in the order: $\mathrm{ScH}_{6}{ }^{3-}<\mathrm{TiH}_{6}{ }^{2-}<\mathrm{VH}_{6}{ }^{-}<\mathrm{CrH}_{6}<\mathrm{MnH}_{6}{ }^{+}$, where the O_{h} isomer was found to be the more stable one for $\mathrm{ScH}_{6}{ }^{3-}$ and $\mathrm{TiH}_{6}{ }^{2-}$. Thus, there is considerable latitude in the deformation potentials and available structures for the $\mathrm{d}^{0} \mathrm{MH}_{6}$ system. We now turn our attention to molecules that are experimentally known.

$\mathbf{W M e}_{6}$ and MF_{6}

Shortland and Wilkinson reported the preparation of WMe_{6} in $1973 .{ }^{47}$ Until very recently its structure was assumed to be octahedral. The strong covalent bonding between tungsten and the methyl groups, using the arguments centered around Figure 1 , should cause the octahedron to be less stable than a distorted variant where greater d orbital involvement in the bonding exists. In fact, Haaland and co-workers' electron diffraction results ${ }^{48}$ pointed to a trigonal prismatic or slightly distorted C_{30} structure. The experimental radial distribution curve was inconsistent with an octahedral geometry. Likewise, Morse and Girolami ${ }^{49}$ have reported the X-ray crystal structure of $[\mathrm{Li}(\mathrm{TMEDA})]_{2}\left[\mathrm{ZrMe}_{6}\right]$. The $\mathrm{ZrMe}_{6}{ }^{2-}$ framework was found to be trigonal prismatic. On the basis of the similarity between HF and MP2 optimized geometries for WH_{6}, all geometry optimizations were carried out for WMe_{6} at the HF level with single-point MP2 calculations. The results are shown in Scheme III. The molecular symmetry imposed, along with relative energies in $\mathrm{kcal} / \mathrm{mol}$ (those listed in parentheses are the HF values), is reported alongside each structure. We find trigonal prismatic 30 to be the global minimum. As indicated in the scheme, our HF optimized geometry ${ }^{50}$ is in excellent agreement with the electron diffraction data. ${ }^{48}$ The octahedral isomer 31 was computed to be $83 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 30 . Direct pyramidalization of the octahedron yielded a C_{30}-type structure (32); however, this is also computed to lie at a very high energy. We looked very carefully for potential distortions of $\mathbf{3 0}$ toward a $C_{3 v}$ variant analogous to 23 for WH_{6}. Several attempts at minor distortions resulted in the collapse back

[^3]to the $D_{3 h}$ structure 30. Ultimately, the angular deformation provided by 23 for WH_{6} was used, and an optimal orientation of each methyl group at this structure was located. The optimization was then carried out in C_{1} symmetry, ${ }^{51}$ and this also collapsed back to 30 . Thus, we are reasonably certain that 30 represents the global minimum. The He (I) and He (II) photoelectron spectra ${ }^{52}$ of WMe_{6} should then be reassigned, according to our HF calculations, as ionizations from the $\mathrm{a}_{2}{ }^{\prime \prime}, \mathrm{e}^{\prime}$, and $\mathrm{e}^{\prime \prime} \mathrm{W}-\mathrm{C}$ σ-bonding orbitals (in order of increasing ionization potential). The $\mathrm{a}_{1}{ }^{\prime}$ orbital lies at the top edge of the $\mathrm{C}-\mathrm{H} \sigma$-bonding manifold. In view of the similarity between the photoelectron spectra of WMe_{6} and $\mathrm{d}^{1} \mathrm{ReMe}_{6},{ }^{52}$ we suspect that ReMe_{6} is also trigonal prismatic, contrary to previous speculations, ${ }^{52,53}$ with the extra electron in a metal-centered d orbital of $a_{1}{ }^{\prime}$ symmetry (see Figure 1).

According to the model presented in the Introduction, when the ligands are electronegative the t_{10} set (see Figure 1) lies at a lower energy relative to $t_{2 g}$. Alternatively, if the ligands possess strong π-donating capability, then they will interact with and destabilize $t_{2 g}$. Either (or both) perturbation increases the $t_{1 u}-t_{2 g}$ energy gap, and, thus, the second-order stabilization energy associated with one or more members of the $t_{1 u}$ set will be greatly diminished. The VSEPR-mandated octahedral geometry can be rendered more stable than the trigonal prismatic or other structural variants. WF_{6} nicely illustrates this, where the geometry in the gas phase ${ }^{54}$ and in the solid state ${ }^{55}$ has been found to be O_{h}. At the HF level, we find the W-F bond distance to be $1.835 \AA$, which is in very good agreement with the electron diffraction values of $1.833(8)^{54 a}$ and $1.832(3) \AA \AA^{54 b}$ The O_{h} isomer was found to be $14 \mathrm{kcal} / \mathrm{mol}$ more stable than the optimized $D_{3 h}$ one, and this increases to $16 \mathrm{kcal} / \mathrm{mol}$ by single-point MP2 calculations. The structures of $\mathrm{MoF}_{6},{ }^{54 b, 56} \mathrm{WBr}_{6},{ }^{57} \mathrm{WCl}_{6}{ }^{58} \mathrm{TiF}_{6}{ }^{2-}$ (with three different countercations), ${ }^{59} \mathrm{ZrCl}_{6}{ }^{2-},{ }^{60}$ and $\mathrm{ZrCl}_{4} \mathrm{~F}_{2}{ }^{2-60 b}$ have all been found to be octahedral. Amido or alkoxide ligands are strong π-donors; consequently, $\mathrm{W}\left(\mathrm{NMe}_{2}\right)_{6},{ }^{61} \mathrm{Mo}\left(\mathrm{NMe}_{2}\right)_{6},{ }^{62}$ and W (OMe$)_{6}{ }^{63}$ have been shown to possess an octahedral geometry. A controversy has arisen over the geometry and existence of CrF_{6}, first reported in $1963 .{ }^{64}$ The original matrix isolation work by Hope et al. ${ }^{65}$ postulated that CrF_{6} was octahedral on the basis of its IR spectrum. This was challenged by Jacob and Willmer, ${ }^{66}$ who argued that the material was CrF_{5}. Our initial theoretical calculations ${ }^{14}$ using basis I at the MP2 level put the O_{h} isomer
(51) The only constrainis imposed were that all $\mathrm{C}-\mathrm{H}$ bond lengths were equivalent and that the $W C_{6}$ core retained C_{30} symmetry. This leads to 49 independent variables which required 6.5 days of CPU time on a VAX 8650.
(52) Green, J. C.; Lloyd, D. R.; Galyer, L.; Mertis, K.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1978, 1403.
(53) Gibson, J. F.; Lack, G. M.; Mertis, K.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976, 1492.
(54) (a) Kimura, M.: Schomaker. U.; Smith, D. W.; Weinstock, B. J. Chem. Phys. 1968, 48, 4001. (b) Seip, H. M.; Seip, R. Acta Chem. Scand. 1966, $20,2698$.
(55) Levy, J. H.; Taylor, J. C.; Wilson, P. W. J. Solid State Chem. 1975, 15, 360.
(56) Levy, J. H.; Taylor. J. C.; Wilson, P. W. Acta Crystallogr., Sect. B 1975, 31. 398. Levy, J. H.; Sanger, P. L.; Taylor, J. C.; Wilson, P. W. Ibid. 1975, 31, 1065
(57) Willing, W.; Müller, U. Acta Crystallogr., Sect. C 1987, 43, 1425.
(58) Taylor, J. C.; Wilson, P. S. Acta Crystallogr., Sect. B 1974, $30,1216$.
(59) Kojic̄-Prodiç, B.; Matkoviĉ, B.; Šçavnicar, S. Acta Crystallogr., Sect. B 1971, 27. 635. Golič, L.; Kaučič, V.; Kojič-Prodić, B. Ibid. 1980, 36, 659. Schäfer, G. F. Z. Kristallogr. 1986, 175, 269.
(60) (a) Schmidbaur, H.; Pichl, R.: Müller, G. Z. Naturforsch. 1986, 41 l , 395. (b) Hartmann, E.; Dehnicke, K.; Fenske, D.; Goesmann, H.; Baum, G. Ibid. 1989, 44b, 1155.
(61) (a) Galyer. A.: Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976 2235. (b) Hagen, K.; Holwill, C. J.; Rice, D. A.; Runnacles, J. D. Acta Chem. Scand. 1988. A42, 578.
(62) Chisholm, M. H.: Hammond, C. E.; Huffman. J. C. J. Chem. Soc., Chem. Commun. 1987. 1423.
(63) Haaland, A.; Rypdal, K.; Volden, H. V.; Jacob, E.; Weidlein, J. Acta Chem. Scand. 1989, 43, 911 .
(64) Glemser, O.: Roesky, H.: Hellberg, K. H. Angew. Chem., Int. Ed. Engl. 1963. 2, 266
(65) Hope, E. G.; Jones, P. J.: Leavason. W.; Ogden, J. S.: Tajik, M.; Turff, J. W. J. Chem. Soc., Dalion Trans. 1985, 1443.
(66) Jacob. E.: Willner. H. Chem. Ber. 1990, I23, 1319.

Figure 3. Valence orbitals of a $\mathrm{d}^{0} \mathrm{MH}_{5}$ (left) and $\mathrm{d}^{0} \mathrm{MH}_{4}$ (right) molecule. Note that the metal p_{z} hybridization for the $x^{2}-y^{2}$ component of t_{2} has not been included in the drawing.

Scheme IV

of $\mathrm{CrF}_{6} 18.5 \mathrm{kcal} / \mathrm{mol}$ more stable than $D_{3 h}$. This decreases to $12.2 \mathrm{kcal} / \mathrm{mol}$ when using basis II (MP2). Marsden and Wolynec ${ }^{67}$ found using CCD calculations that the $D_{3 n}$ structure was $4.7 \mathrm{kcal} / \mathrm{mol}$ more stable and further that the MPn expansion was oscillatory. ${ }^{68}$ Using our basis I, we have reconfirmed this result in that the $D_{3 h}$ geometry is $7.3 \mathrm{kcal} / \mathrm{mol}$ more stable than O_{h} at the CCD level. However, we find that with the ST4CCD treatment this ordering is reversed and the $D_{3 h}$ structure now lies $22.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy. ${ }^{46 \mathrm{c}}$ The resolution of this controversy comes from the recently published communication of Hope and co-workers. ${ }^{69}$ The high-resolution IR spectrum shows isotopic features which can be modeled only for CrF_{6} (and not for CrF_{5}); furthermore, it is convincingly demonstrated that CrF_{6} is, indeed, octahedral. ${ }^{69}$

$\mathrm{d}^{0} \mathrm{ML}_{5}$ Complexes

For a $\mathrm{d}^{0} \mathrm{ML}_{5}$ complex the VSEPR rules and force field calculations ${ }^{31 \mathrm{~b}}$ predict that a trigonal bipyramidal structure should be more stable than other geometrical alternatives. A number of theoretical studies have been previously carried out for structural

[^4](69) Hope. E. G.: Levason, W.; Ogden, J. S. Inorg. Chem. 1991, 30, 4873.

Table IV. Relative Energies for $\mathrm{d}^{0} \mathrm{ML}_{5}$ Complexes

molecule	level	$\begin{gathered} D_{3 n} \\ (\mathbf{3 3}) \end{gathered}$	$\begin{gathered} C_{4 v} \\ (34) \end{gathered}$	$\begin{gathered} C_{3 v} \\ (\mathbf{3 5}) \end{gathered}$	$\begin{gathered} C_{2 v} \\ (36) \end{gathered}$	$\begin{gathered} C_{3} \\ (37) \end{gathered}$
VF5 basis I	HF	$0(0)^{\text {a }}$	1.6(1) ${ }^{\text {a }}$	b	b	b
	MP2	0	0.7			
VF ${ }_{5}$ basis II	HF	0	2.0			
	MP2	0	0.8			
TaCl ${ }_{5}$	HF	$0(0)$	1.7(1)			
	MP2	0	1.6			
	MP4(SDQ)	0	1.5			
	QCISD	0	1.7			
	QCISD(T)	0	1.7			
TaH5	HF	16.6	0	16.6	3.0	
	MP2	20.2(3)	$0(0)$	20.1(2)	3.4(1)	
	MP4(SDQ)	19.1	0	19.1	3.3	
	QCISD	19.3	0	19.3	3.2	
	QCISD(T)	19.6	0	19.6	3.1	
VH_{5} basis I	HF	20.9	0	16.4	0.5	4.7
	MP2	27.5(3)	$0(0)$	21.5(2)	6.5(2)	4.9(1)
	MP4(SDQ)	27.9	0	23.3	5.8	6.2
	QCISD	29.4	0	24.9	3.0	5.0
	QCISD(T)	27.4	0	22.6	3.2	5.4

${ }^{0}$ The number of imaginary frequencies are given in parentheses. ${ }^{b}$ Statioinary points are not found on the potential energy surface.
preferences of transition-metal complexes with greater than d^{0} electron counts. ${ }^{8.70}$ The valence orbitals for a $D_{3 h}$ structure are shown on the left side of Figure 3. Notice the presence of the high-lying, filled $a_{2}{ }^{\prime \prime}$ orbital which consists of p character at the metal and the low-lying $e^{\prime \prime}$ set which is exclusively metal d . It is clear that these orbitals can play a role precisely analogous to the $\mathrm{t}_{1 \mathrm{u}} / \mathrm{t}_{2 \mathrm{~g}}$ set (Figure 1) for ML_{6}. A potential second-order Jahn-Teller distortion of $e^{\prime \prime} \times a_{2}{ }^{\prime \prime}=e^{\prime}$ symmetry will serve to mix $e^{\prime \prime}$ into $a_{2}{ }^{\prime \prime}$, stabilizing the latter. Provided that the $e^{\prime \prime}-a_{2}{ }^{\prime \prime}$ energy gap is small, this e^{\prime} distortion mode, which can convert the trigonal bipyramid to the square pyramid (C_{40}), will be stabilizing. As for the $\mathrm{d}^{0} \mathrm{ML}_{6}$ example, this will occur when L contains little π-donating capabilities and the $\mathrm{M}-\mathrm{L}$ bond is reasonably covalent. The $D_{3 h}$ and $C_{4 v}$ structures are, however, two of several possibilities to consider, as outlined in Scheme IV. We start our discussion with VF_{5} and TaCl_{5} where the potential energy surfaces are quite simple and there is ample experimental information.

The electron diffraction structure ${ }^{71}$ of VF_{5} points to a $D_{3 h}$ structure with axial and equatorial distances of 1.732(7) and 1.704(5) \AA, respectively. Our HF calculations with basis I are in excellent agreement with optimized distances of 1.734 and 1.696 \AA, respectively. Calculations of the harmonic frequencies produce values which are uniformly larger than the experimental gas-phase values ${ }^{72}$ with a mean 7.2% error. ${ }^{73}$ The symmetry of the normal modes associated with these frequencies agrees with the experimental assignments. ${ }^{74}$ It has been universally argued ${ }^{70 a, b}$ that axial-equatorial exchange in VF_{5} and other $\mathrm{d}^{0} \mathrm{MX}_{5}$ molecules occurs via the classic Berry pseudorotation process ${ }^{74}$ which proceeds from the $D_{3 h}$ (33) to $C_{4 c}$ (34) transition state in Scheme IV. Analysis of the $\nu_{7}\left(\mathrm{e}^{\prime}\right)$ vibrational transitions in VF_{5} put the barrier height at $1.5-1.2 \mathrm{kcal} / \mathrm{mol} .^{72 \mathrm{c}}$ Our calculations at the HF and MP2 (single-point) levels are reported in Table IV and are
(70) (a) A review of the early literature may be found in Boldrev, A. I.; Charkin, O. P. Zh. Strukt. Khim. 1984, 25, 102. (b) Rossi, A. R.; Hoffmann, R. Inorg. Chem. 1975, 14, 365. (c) Elian, M.: Hoffmann, R. Ibid. 1975, 14. 1058. (d) Burdett, J. K. Ibid. 1975, 14, 375; J. Chem. Soc., Faraday Trans. 2 1974, 1599. (e) Demuynck, J.; Strich, A.; Veillard, A. Nouv. J. Chim. 1977, 1, 217. (f) Hay, P. J. J. Am. Chem. Soc. 1978, 100, 2411. (g) Jean, Y.; Eisenstein, O. Polyhedron 1988, 7, 405. Rachidi, El-1. I.; Eisenstein, O.; Jean, Y. New J. Chem. 1990, 14, 671. Riehl, J.-F.; Jean, Y.; Eisenstein, O.; Pelissier, M. Organometallics 1992, 1/, 729.
(71) Hagen, K.; Gilbert, M. M.; Hedberg, L.; Hedberg, K. Inorg. Chem. 1982, 21, 2690 and references therein.
(72) (a) Claassen, H. H.; Selig, H. J. Chem. Phys. 1966, 44, 4039. (b) Hope, E. G. J. Chem. Soc., Dalton Trans. 1990, 723. (c) Bernstein, L. S.; Abramowitz, S.; Levin, 1. W. J. Chem. Phys. 1976, 64, 3228 . (d) Selig, H.; Holloway, J. H.; Tyson, J.; Claassen, H. H. Ibid. 1970, 53, 2559.
(73) The errors range from 3.7% to 9.9%.
(74) Berry, R. S. J. Chem. Phys. 1960, 32, 933.
in agreement with this estimate. ${ }^{75}$ By the Berry process, the one calculated imaginary mode of b_{2} symmetry for the C_{4} isomer does, indeed, take $C_{4 v}$ to $D_{3 h}$. The situation for TaCl_{5} is not quite so clear. The electron diffraction structure of TaCl_{5} by Ischenko and co-workers was found to be $D_{3 h}$ with axial and equatorial bond lengths of 2.369(4) and 2.227(4) \AA, respectively. Our axial distance was computed at the HF level to be $2.369 \AA$; however, the equatorial one was $2.326 \AA$. An error of this magnitude for theory is certainly not without precedent in the transition-metal area. However, there are a number of perplexing features of the experimental work in comparison to what has been found for other MX_{5} molecules. Firstly, the gas-phase electron diffraction structures for $\mathrm{NbF}_{5}{ }^{77} \mathrm{TaF}_{5}{ }^{77}$ and $\mathrm{TaBr}_{5}{ }^{76}$ (all have $D_{3 h}$ symmetry), along with the previously mentioned $\mathrm{VF}_{5},{ }^{71}$ have axialequatorial bond length differences of $0.07,0.04,0.06$, and 0.03 \AA, respectively. These are considerably smaller than that found ${ }^{76}$ for $\mathrm{TaCl}_{5}\left(0.14 \AA\right.$). Ischenko and co-workers ${ }^{76}$ also determined the axial and equatorial bond lengths for NbCl_{5} to be 2.338(6) and $2.241(4) \AA$, respectively (a $0.10-\AA$ difference). Optimizations ${ }^{79}$ of NbCl_{5} with five different basis sets (both all-electron and effective core potential) produce axial bond lengths that range from 2.356 to $2.373 \AA$. However, again the equatorial ones are predicted to be considerably shorter than those given by electron diffraction, 2.305-2.338 \AA (axial-equatorial differences of $0.02-0.05 \AA$). The force fields used by Ischenko and co-workers ${ }^{76}$ for the electron diffraction determination was developed from frequencies recorded and assigned by Beattie and Ozin. ${ }^{80}$ There is a 5.7% absolute mean error between our calculated (harmonic) and the experimental values; however, there is a disagreement in the assignments. The peak at $181 \mathrm{~cm}^{-1}$ (calculated $192 \mathrm{~cm}^{-1}$) was assigned to be of e^{\prime} symmetry, but we find it to be an $\mathrm{e}^{\prime \prime}$ mode. Likewise, that at $127 \mathrm{~cm}^{-1}$ (calculated $140 \mathrm{~cm}^{-1}$) was assigned to be $e^{\prime \prime}$, whereas we find it to be e^{\prime}. Furthermore, the low-frequency é mode at $54 \mathrm{~cm}^{-1}$ (calculated $56 \mathrm{~cm}^{-1}$) corresponds to the in-plane equatorial bend and that at $181 \mathrm{~cm}^{-1}$ to the axialequatorial bending mode from the force field developed and used by Ischenko and co-workers. ${ }^{76}$ Our calculations suggest that the $54 \mathrm{~cm}^{-1}$ vibration should correspond to the axial-equatorial bending motion and that at $127 \mathrm{~cm}^{-1}$ to the in-plane equatorial mode. We should point out that the relative ordering of the magnitudes, symmetries, and associated eigenvectors for the two sets of e^{\prime} and $\mathrm{e}^{\prime \prime}$ vibrations calculated for TaCl_{5} correspond to those found from experiment and theory for VF_{5}. Thus, we encourage a reinvestigation of TaCl_{5}. Our calculations barrier heights on going from $D_{3 h}$ to C_{40} at several correlated levels for TaCl_{5} are presented in Table IV. Values from 1.5 to $1.7 \mathrm{kcal} / \mathrm{mol}$ are found, and this is in reasonable agreement with the estimate of $1.2(6)$ $\mathrm{kcal} / \mathrm{mol}$ by Ischenko and co-workers. ${ }^{76}$ At the C_{40} geometry, one normal mode of b_{2} symmetry was found to be imaginary, confirming that this structure was the transition state for the Berry pseudorotation process. For both VF_{5} and TaCl_{5}, stationary points for $D_{3 h}$ and $C_{4 c}$ were the only ones located on the potential energy surface.

A $\mathrm{d}^{0} \mathrm{MH}_{5}$ molecule is unknown, although the d^{8} complexes $\mathrm{Mg}_{2} \mathrm{CoH}_{5}$ and $\mathrm{Sr}_{2} \mathrm{IrD}_{5}$ have been prepared and possess trigonal bipyramidal structures. ${ }^{81}$ For a $\mathrm{d}^{0} \mathrm{MH}_{5}$ molecule, the $\mathrm{e}^{\prime \prime}-\mathrm{a}_{2}{ }^{\prime \prime}$ (Figure 3) energy gap is expected to be much smaller than that for MX_{5}. Consequently, non-VSEPR geometries are more likely to be present. We find this to be, indeed, the case. For TaH_{5},

[^5] Moyer, R. D. J. Solid State Chem. 1981, 40, 352.

($\mathrm{C}_{4 \mathrm{~V}}$)

B

c

A^{t}

B^{t}

C^{t}

Figure 4. Intrinsic reaction coordinate path for apical-basal exchange in TaH_{5} (computed at the HF level). The insert at the center shows the relative energy versus normalized path distance.
we find the $D_{3 h}$ structure 33 (Scheme IV) to be $19.5 \mathrm{kcal} / \mathrm{mol}$ (at the QCISD(T) level; see Table IV) less stable than the C_{40} 34. While $C_{4 c}$ is a minimum on the potential energy surface, the $D_{3 h}$ structure has imaginary frequencies of $\mathrm{a}_{2}{ }^{\prime \prime}$ and e^{\prime} symmetry. The a ${ }_{2}{ }^{\prime \prime}$ motion converts $D_{3 h}$ to $C_{3 v}$, structure 35. This isomer has two imaginary frequencies of e symmetry. Inspection of the relative energies in Table IV reveals that an optimization at a higher level of theory may well not yield a stationary point of $C_{3 c}$ symmetry. ${ }^{82}$

Careful inspection of the potential energy surface for TaH_{5} revealed the existence of another stationary point of $C_{2 v}$ symmetry (35). Its relative energy lies only $3.1 \mathrm{kcal} / \mathrm{mol}$ (QCISD(T) level) higher than C_{40}, and it has one imaginary frequency of b_{2} symmetry. This motion converts the $C_{2 v} 35$ to the $C_{4 c}$ global minimum. To confirm this, we computed 15 points between $C_{2 v}$ and $C_{4 v}$ along the intrinsic reaction coordinate path. ${ }^{83,84}$ The results are displayed in Figure 4. Using the numbering system for the hydrogens by structure \mathbf{A} in this figure, at the C_{40} geometry the $\mathrm{H}_{2}-\mathrm{Ta}-\mathrm{H}_{3}$ and $\mathrm{H}_{4}-\mathrm{Ta}-\mathrm{H}_{5}$ angles are 124.6°, whereas at the $C_{2 v}$ structure they became 120.4° and 130.2°, respectively (the $\mathrm{H}_{3}-\mathrm{Ta}-\mathrm{H}_{4}$ angle is only 65.1°). Thus, the predominant geometrical motion is simply the pivoting of H_{4} and H_{5} around the axis perpendicular to the plane of the paper in Figure 4. Of course, the same motion exists for H_{2} and H_{3}, where the pivot axis now lies in the plane of the paper. The apical hydrogen H_{1} in structure A has been shaded. Following the evolution of the reaction path through structure \mathbf{D} and its mirror image shows that apical-basal exchange has occurred. There have been many proposals ${ }^{85}$ of

[^6]polytopal rearrangement mechanisms in ML_{5} complexes, with certainly the most universally accepted one being the Berry process. ${ }^{74.86}$ The pivoting mechanism here resembles somewhat the tetrahedral edge transverse, except that the latter begins from the trigonal bipyramid. ${ }^{85 d, 87}$ Here, the trigonal bipyramidal structure, which lies at very high energy, is completely avoided by the pivoting mechanism, which passes through the $C_{2 v}$ structure 36. Notice in Scheme IV that the e^{\prime} normal mode on going from $D_{3 h}$ (33) to $C_{2 v}$ (36) is precisely identical to, but in an opposite sense, the motion going from $D_{3 h}(33)$ to C_{40} (34). Thus, the $y z$ component of $\mathrm{e}^{\prime \prime}$ also mixes into and stabilizes $\mathrm{a}_{2}{ }^{\prime \prime}$ in Figure 3 upon going to the $C_{2 v}$ structure, rendering it more stable than $D_{3 h}$. We should point out that a similar situation exists for $\mathrm{d}^{6} \mathrm{ML}_{5}$ species; however, apical-basal exchange here occurs from a $C_{2 v}$ distorted trigonal bipyramid where one equatorial-metal-equatorial angle is very acute. ${ }^{8,70 c, f, g}$ Repeated attempts to locate an analogous stationary point for TaH_{5} resulted in collapse to $C_{4 c}$, $D_{3 h}$, and $C_{2 v}$ (35) structures. The situation we find for VH_{5} is very similar to TaH_{5} (Table IV). The C_{40} square pyramid is the ground state, and $D_{3 h}$ is $27.4 \mathrm{kcal} / \mathrm{mol}$ (QCISD(T) level) higher in energy. A slight difference exists in that the $C_{2 v}$ structure 36 (Scheme IV) has two imaginary frequencies of b_{2} and b_{1} symmetry. Following the b_{1} mode produces the $C_{s} 37$. This motion causes the two hydrogens to bend upward by 41.9°. The C_{s} structure does possess one imaginary frequency of $a^{\prime \prime}$ symmetry, which converts it to the C_{40} ground state. However, its relative energy increases while that for $C_{2 v}$ decreases on going to the QCISD and QCISD(T) levels; thus, we expect that the $C_{2 w}$ isomer may serve as the transition state for apical-basal exchange at higher levels of theory. For VH_{5}, we deliberately started geometrical optimizations from two ($\eta^{2}-\mathrm{H}_{2}$) VH_{3} pseudotetrahedral and three $\left(\eta^{2}-\mathrm{H}_{2}\right)_{2} \mathrm{VH}$ trigonal planar structures. In all cases, these optimizations simply produced one of the stationary points shown in Scheme IV. Thus, we find for both TaH_{5} and VH_{5} that

[^7]Scheme V

	culc.	exp.
$\mathrm{TO}_{3}-\mathrm{C}_{5}$	2.154	$2.11(2) \AA$
$\mathrm{TO}-\mathrm{C}_{1}$	2.187	$2.180(5) \AA$
$\mathrm{C}-\mathrm{H}$	1.099	$1.106(6) \AA$
$\mathrm{C}_{1}-\mathrm{TO}_{0}-\mathrm{C}_{5}$	111.6°	$111.7(13)^{\circ}$
$\mathrm{C}_{1} \cdot \mathrm{TO}-\mathrm{C}_{4}$	82.2°	$82.2(9)^{\circ}$
$\mathrm{TO}-\mathrm{C}-\mathrm{H}$	111.2°	$110.3(16)^{\circ}$

the $D_{3 n}$ geometry is a higher-order saddle point. The ground-state geometry for both is $C_{4 c}$, and a low-energy path exists for api-cal-basal exchange which avoids the trigonal bipyramid. Replacement of the hydrogens with methyl groups will not alter the electronic situation. The steric bulk of a methyl group is certainly larger, however, than that of a hydrogen, and consequently the energy differences between the VSEPR-mandated trigonal bipyramid and the square pyramid or certainly the $C_{2 v}$ structure analogous to 36 are expected to be smaller. With this in mind, we proceed to TaMe_{5}.
TaMe_{5} has been known since $1974{ }^{88}$ and was assumed to be a trigonal bipyramid. Very recently, Haaland and co-workers ${ }^{89}$ investigated its structure by electron diffraction and found TaMe_{5} to be a square pyramid. Our HF optimizations are reported in Scheme $\mathrm{V},{ }^{90}$ where relative energies in $\mathrm{kcal} / \mathrm{mol}$ at the HF level are listed in parentheses and those from single point MP2 calculations are listed below them. Starting with the square pyramid, three rotomers, $38-40$, were considered and optimized within C_{s} symmetry. Of these, 38 is the lowest and corresponds to the structural model used by Haaland and co-workers. ${ }^{89}$ The averaged theoretical ${ }^{91}$ and experimental details are given below the structure. The agreement between theory and experiment is excellent. We feel that the higher energies associated with 39 and $\mathbf{4 0}$ are primarily steric in origin. Both structures contain more eclipsing $\mathrm{H}-\mathrm{C}-\mathrm{Ta}-\mathrm{C}$ interactions. Furthermore, the nonbonded $\mathrm{H} \cdots \mathrm{H}$ distances between basal methyl groups in $\mathbf{4 0}$ are considerably shorter than in the other rotomers. Another rotomer where one basal methyl group was oriented so that only one $\mathrm{C}-\mathrm{H}$ bond eclipsed the $\mathrm{Ta}-\mathrm{C}_{\text {apical }}$ bond was optimized in C_{s} symmetry. Its HF relative energy was found to be $3.7 \mathrm{kcal} / \mathrm{mol}$ higher than 38.

[^8]Critical to our discussion, we find that trigonal bipyramid 41, with $C_{3 h}$ symmetry, lies $7.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy (at the MP2 level) than 38 . Other methyl group orientations were tried for a trigonal bipyramid; however, these either were computed to be at higher energies or collapsed to 41 . The ${ }^{13} \mathrm{C}$ NMR of TaMe_{5} consists of one sharp resonance down to $-120^{\circ} \mathrm{C} .{ }^{89}$ This implies that $\Delta G^{*}<\sim 7 \mathrm{kcal} / \mathrm{mol}$ for apical-basal exchange. Given our findings for the exchange pathway associated with TaH_{5} and VH_{5}, special care was taken to search for an analogous transition state in TaMe_{5}. This included trials with four different methyl group orientations and a scan of the potential energy surface in two dimensions. In the pivoting mechanism, two trans basal methyl groups, for example C_{1} and C_{2} in 38 , rotate around an axis perpendicular to the molecular mirror plane until they approximately eclipse the $\mathrm{Ta}-\mathrm{C}_{3}$ (or $\mathrm{Ta}-\mathrm{C}_{4}$) bond. This motion can be conveniently described by changes in one dihedral angle. This dihedral angle, along with the $\mathrm{C}_{1}-\mathrm{Ta}-\mathrm{C}_{3}\left(\mathrm{C}_{2}-\mathrm{Ta}-\mathrm{C}_{3}\right)$ bond angle, was used to construct the two-dimensional surface and to crudely locate a saddle point. These two variables were then frozen, and the remaining internal coordinates were optimized in C_{s} symmetry. Finally, the force constants associated with the two variables were numerically computed, and the full transition state optimization produced structure 42. The eigenvector associated with the one negative eigenvalue in the Hessian matrix was almost exclusively associated with the aforementioned dihedral angle. Structure 42 contains basically the same methyl group orientation as in the trigonal bipyramid 41. However, the two axial groups are bent 8.9° from their idealized positions toward one equatorial methyl group, as in the $C_{2 \cdot}$ geometry of TaH_{5} (36, Scheme IV). The MP2 energy of $\mathbf{4 2}$ was $2.1 \mathrm{kcal} / \mathrm{mol}$ more stable than that of 41 (5.8 $\mathrm{kcal} / \mathrm{mol}$ above the ground state 38). While we have not computed the frequencies associated with 42, nor have we followed the intrinsic reaction coordinate from 38 to 42 , nonetheless, we believe that the pivoting mechanism represents a viable option for api-cal-basal exchange in TaMe_{5}.

Conclusions and Extensions

We have shown that the structures anticipated by the VSEPR rules for $\mathrm{d}^{0} \mathrm{ML}_{6}$ and ML_{5} complexes (namely the octahedron and the trigonal bipyramid, respectively) lie at high relative energies when certain conditions are met. The M-L bond should be reasonably covalent, and L must be a strong σ-donor, sterically not demanding, and have little π-donating capabilities. The optimal structure for CrH_{6} appears most likely to be an $\left(\eta^{2}-\mathrm{H}_{2}\right)_{3} \mathrm{Cr}$ species, although a $C_{3 c}$ distorted octahedron or trigonal prism may well represent lower-energy structures at a higher computational level. For WH_{6} the $C_{3 v}$ distorted trigonal prism or a $C_{5 v}$ pentagonal prism is found to be the ground state. All of the structures with $C_{3 v}$ symmetry can be directly predicted by use of the second-order Jahn-Teller model in that all three members of the low-lying, empty $t_{2 g}$ set mix into and stabilize the three members of the high-lying, filled $t_{1 u}$ set. Maximal involvement of the d orbitals at the transition metal is thus attained. The $C_{5 v}$ pentagonal prism represents another solution to maximize d orbital mixing. Since the methyl groups are considerably bulkier than hydrogens, the distortion in WMe_{6} stops at the trigonal prism and the optimal structure is in close agreement with experiment. In $\mathrm{TaH}_{5}, \mathrm{VH}_{5}$, and TaMe_{5} at the trigonal bipyramidal geometry, there is a small energy gap between the empty $e^{\prime \prime}$ set and a filled $a_{2}{ }^{\prime \prime}$ orbital. The Jahn-Teller method predicts that an e^{\prime} motion will be stabilizing. This motion in one direction produces a square pyramid, which is the ground state for all three species. An e^{\prime} motion in the opposite sense (toward one equatorial bond) produces a $C_{2 v}$ structure, which serves as the transition state for apical-basal exchange. The reaction path on going from the square pyramid to the $C_{2 v}$ transition state is a novel pivoting process of two trans basal ligands. This motion completely avoids the higher-energy trigonal bipyramidal structure. The optimal structure for TaMe_{5} is in close agreement with experiment. The energy gains on going from the VSEPR to the optimal structure are much larger for the $\mathrm{d}^{0} \mathrm{ML}_{6}$ cases than that found for $\mathrm{d}^{0} \mathrm{ML}_{5}$. In ML_{6}, two or all three components of the empty $\mathrm{t}_{2 \mathrm{~g}}$ set can mix into the $\mathrm{t}_{1 \mathrm{u}}$ set.

However, in ML_{5} only one member of $\mathrm{e}^{\prime \prime}$ mixes into the $\mathrm{a}_{2}{ }^{\prime \prime}$ HOMO. All $\mathrm{d}^{0} \mathrm{MX}_{6}$ and MX_{5} molecules studied here possess the VSEPR-mandated structures; namely, CrF_{6} and WF_{6} are found to be octahedral and VF_{5} along with TaCl_{5} are trigonal bipyramids. The situation for other ML_{n} complexes can be easily obtained in a qualitative fashion.

The valence orbitals of a $\mathrm{d}^{0} \mathrm{MH}_{4}$ complex are presented on the right side of Figure 3. At the tetrahedral geometry there are again two empty d metal nonbonding orbitals. However, the t_{2} HOMO already contains maximal d character. Thus, it is not surprising that TiH_{4}, which is a known compound, ${ }^{92}$ has been found to be a local minimum (and in all likelihood the global minimum) at the tetrahedral geometry. ${ }^{10,93}$ For a $\mathrm{d}^{0} \mathrm{ML}_{2}$ system at the $D_{\infty h}$ geometry, the filled $\sigma_{u}{ }^{+}$orbital 43 has exclusively p character at the metal. One component of π_{g}, shown in 44 , will strongly mix into 43 upon bending to a $C_{2 v}$ structure. Thus, even in the highly

(92) (a) Breisacher, A.; Siegel, B. J. Am. Chem. Soc. 1963, 85, 1705. (b) Xiao, Z. L.: Hauge, R. H.; Margrave, J. L. J. Phys. Chem. 1991, 95, 2696. (93) Thomas, J. R.; Quelch, G. E.; Seidl, E. T.; Schaeffer, H. F., III J. Chem. Phys. 1992, 96, 6857.
ionic SrH_{2} and BaH_{2} molecules, bent rather than linear geometries are found. ${ }^{9 b}$ Furthermore, the calculated bending force constant varies inversely with the percentage of metal d hybridization for MX_{2} molecules where $\mathrm{M}=\mathrm{Sr}$ and $\mathrm{Ba}{ }^{9 \mathrm{a}}$ The HOMO and LUMO for a trigonal planar $\mathrm{d}^{0} \mathrm{MH}_{3}$ molecule are e^{\prime} and $\mathrm{e}^{\prime \prime}$, respectively (precisely analogous to e^{\prime} and $\mathrm{e}^{\prime \prime}$ for MH_{5} on the left side of Figure 3). Although the e^{\prime} set contains d character at the metal, upon pyramidalization $\mathrm{e}^{\prime \prime}$ will mix into e^{\prime}, thus increasing the metal d hybridization. Jolly and Marynick ${ }^{10}$ have found that $\mathrm{ScH}_{3}, \mathrm{TiH}_{3}{ }^{+}$, and $\mathrm{TiMe}_{3}{ }^{+}$all prefer pyramidal over planar structures at the HF level. We suspect that this will also be true when allowance is made for electron correlation.

Acknowledgment. We wish to thank Drs. Arne Haaland, Jeremy Burdett, Odile Eisenstein, Oleg Charkin, Colin Marsden, Dennis Marynick, Fritz Schaeffer, and Monte Pettitt for many stimulating discussions. We gratefully acknowledge support from the Robert A. Welch Foundation, the donors of the Petroleum Research Fund as administered by the American Chemical Society, and the University of Houston's President's Research Enhancement Fund, and thanks are due to the National Science Foundation for a generous allocation of computer time at the Pittsburgh Supercomputing Center.

Supplementary Material Available: Coordinates (in Z-matrix form), total energies, and harmonic frequencies for 1-42 (45 pages). Ordering information is given on any current masthead page.

Interlayer Communication in Some Two-Dimensional Materials

Seeyearl Seong, Kyeong-Ae Yee, and Thomas A. Albright*
Contribution from the Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5641. Received September 18, 1992

Abstract

Tight binding calculations with an extended Hückel Hamiltonian were used to probe interlayer bonding in four representative compounds. In $\mathrm{V}_{2} \mathrm{O}_{5}$, a straightforward interaction exists between the apical oxygen lone pairs and empty z^{2} orbitals on vanadium in adjacent layers. There exists no covalent bonding between $\mathrm{Bi}_{2} \mathrm{O}_{2}{ }^{2+}$ and $\mathrm{WO}_{4}{ }^{2-}$ layers in $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ at the prototype geometry. However, when the metal octahedra are tilted and the perovskite layer is shifted in its registry, two relatively strong bonds form between the out-of-plane oxygen atoms in the perovskite layer and bismuth. Here the interaction transfers electron density from the oxygen lone pairs to empty $\mathrm{Bi}-\mathrm{O} \sigma^{*}$ orbitals. This, in turn, creates structural deformations within the $\mathrm{Bi}_{2} \mathrm{O}_{2}{ }^{2+}$ layer. For $\mathrm{LiBiPd}_{2} \mathrm{O}_{4}$, we find covalent interaction between bismuth and palladium. Yet this does not appear to be the case in the topologically analogous $\mathrm{Pd}_{3} \mathrm{P}_{2} \mathrm{~S}_{8}$ structure. The reasons for the differences in covalent interaction are discussed in detail.

Introduction

From a geometrical point of view, layered or lamellar compounds ${ }^{1}$ are inherently two-dimensional. A popular definition ${ }^{\text {la }}$ requires that they consist of electrically neutral layers held together only by van der Waals forces. Thus, layered compounds are easily cleaved, and the freshly exposed surfaces are relatively inert. Layer-type compounds have been extensively studied ${ }^{1}$ in recent years, not only for their use as lubricants, etc., but also because of their highly anisotropic properties. Graphite and its fluorinated analog are perhaps the most well-known examples. In most

[^9]compounds, the top and bottom layers of the "sandwiches" consist of anions only or, in some rare cases, of cations only. ${ }^{1 a, b}$ An interesting feature of many of these compounds is that their quasi-three-dimensional character can be gradually weakened or reinforced by intercalation with metal or organic radicals. Most frequently, electrostatic forces exist between the layer and the intercalate.
Trinquier and Hoffmann have suggested that weak covalent interlayer bonding exists between Pb atoms in adjacent layers in α - and β - $\mathrm{PbO} .^{2}$ Likewise, weak interactions between Te atoms in certain MTe_{2} phases have been found by Canadell, Whangbo, and co-workers. ${ }^{3}$ It is our contention that this is a more general phenomena and that in many cases the remnants of covalent bonding can be found in layered compounds and intercalated

[^10]
[^0]: (1) (a) Chungnam National University. (b) University of Houston.
 (2) (a) Gillespie, R. J.; Nyholm, R. S. Q. Rev. Chem. Soc. 1957, II, 339.
 (b) Gillespie, R. J. Molecular Geometry; van Nostrand-Reinhold: London, 1972. (c) Gillespie, R. J.; Hargittai, 1. The VSEPR Model of Molecular Geometry; Allyan and Bacon: Boston, 1991.
 (3) See, for example: Hall, M. B. Inorg. Chem. 1978, 17, 2261. Burdett, J. K.; Fassler, T. F. Ibid. 1991, 30, 2859. Baird, N. C. Ibid. 1989, 28, 1224. Gillespie, R. J. Can. J. Chem. 1992, 70, 742.
 (4) Reed, A. E.: Schleyer, P. v. R.; Janoschek, R. J. Am. Chem. Soc. 1991. 113, 1885.
 (5) Marsden, C. J. J. Chem. Soc., Chem. Commun. 1989, 1356.
 (6) (a) Mahjoub, A. R.; Hoser, A.; Fuchs, J.: Seppelt, K. Angew. Chem. 1989, 101, 1528 ; Angew. Chem., Int. Ed. Engl. 1989, 28, 1526 . (b) For an excellent survey and theoretical analysis, see: Wheeler. R. A.; Pavankumar. P. N. V. J. Am. Chem. Soc. 1992, 114, 4776.
 (7) Peterson. S. W.; Holloway, J. H.; Coyle, B. A.; Williams, J. M. Science 1971, $173,1238$.
 (8) Albright, T. A.: Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry: Wiley: New York, 1985.

[^1]: (32) Calculations of CrH_{6} and WH_{6} at the octahedral geometry have been reported: Pyykkö, P.; Desclaux, J. P. Chem. Phys. 1978, 34, 261.
 (33) For computations, see: Lindberg. P.; Noreus, D.: Blomberg, M. R. A.: Siegbahn. P. E. M. J. Chem. Phys. 1986. 85, 4530.
 (34) Hlatky, G. G.: Crabtree, R. H. Coord. Chem. Rev. 1985. 65, 1. (35) (a) Kepert. D. L. Prog. Inorg. Chem. 1977, 1. 23. (b) Wentworth. R. A. D. Coord. Chem. Rev. 1972. 9, 171.
 (36) (a) Dobbs, K. D.: Hehre, W. J. J. Am. Chem. Soc. 1986, 108, 4663. (b) Ohanessian, G.: Goddard, W. A., 111 Acc. Chem. Res. 1990, 23. 386. (37) Chan, F.; Oishi, Y.; Albright. T. A.. to be published.

[^2]: (41) (a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.: John Wiley: New York, 1988; 777. (b) Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper and Row: New York, 1983: 578.
 (42) The calculated adiabatic electron affinity of WF_{6} was found to be 3.85 eV , while that in CrF_{6} was 8.24 eV . Miyoshi, E.: Sakai, Y.; Murakami, A.; lwaki, H.: Terashima, H.; Shoda, T.; Kawqaguchi, T. J. Chem. Phys. 1988, 89, 4193.
 (43) For experimental support, see: Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J. J. Am. Chem. Soc. 1991, M3, 4876 and references therein.
 (44) (a) Musaev, D. G.; Charkin, O. P. Koordinat. Khim. 1989, 15, 161. (b) Zjubin, A. S.: Musaev, D. G.; Charkin, O. P. Russ. J. Inorg. Chem. In press.
 (45) Cameron, A. D.: Fitzgerald, G.; Zerner, M. C. Inorg. Chem. 1988, 27, 3437.
 (46) (a) Jonas, V.; Frenking. G.; Gauss, J. Chem. Phys. Lett. 1992, 194, 109. (b) These researchers found that $\mathrm{TiH}_{6}{ }^{2-}$ is 3.7 and $2.9 \mathrm{kcal} / \mathrm{mol}$ more stable at the $D_{3 h}$ geometry a: the $\mathrm{QCISD}(\mathrm{T})$ and $\operatorname{CCSD}(\mathrm{T})$ levels, respectively. (c) In a reference to unpublished work ihe O_{h} geometry for CrF_{6} was found to be $11.2 \mathrm{kcal} / \mathrm{mol}$ more stable at the $\operatorname{CCSD}(\mathrm{T})$ level.

[^3]: (47) Shortland, A. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 872. Galyer, A. L.; Wilkinson, G. Ibid. 1976, 2235.
 (48) Haaland, A.; Hammel. A.; Rypdal, K.; Volden, H. V. J. Am. Chem. Soc. 1990, 112, 4547.
 (49) Morse, P. M.; Girolami, G. S. J. Am. Chem. Soc. 1989, III, 4114
 (50) There are two types of $\mathrm{C}-\mathrm{H}$ bonds in 30 in the ratio of $1: 2$. The $\mathrm{C}-\mathrm{H}$ distance and $\mathrm{W}-\mathrm{C}-\mathrm{H}$ angles are averaged from those found to be 1.093 and $1.097 \AA$ along with 111.5° and 110.4°, respectively.

[^4]: (67) Marsden, C. J.; Wolynec, P. P. Inorg. Chem, 1991, 30, 1682.
 (68) We concur that this is indeed the case. Frenking and co-workers ${ }^{468}$ also find similar tendencies for $\mathrm{TiH}_{6}{ }^{2-}$ and $\mathrm{VH}_{6}{ }^{-}$. The results reported in Tables 1 and II for CrH_{6} do indicate a problem with especially the relative energies of $\eta^{2}-\mathrm{H}_{2}$ structures in a MPn expansion, as indicated previously. However, there is close correspondence in general belween the HF and MP2 relative energies as well as those found at higher correlation levels for the remaining molecules investigated in this study.

[^5]: (75) Zero-point energy corrections using the harmonic frequencies raise the barrier by only $0.02 \mathrm{kcal} / \mathrm{mol}$ for VF_{5} and $0.01 \mathrm{kcal} / \mathrm{mol}$ for TaCl_{5}.
 (76) Ischenko, A. A.; Strand, T. G.; Demidov, A. V.; Spiridonov, V. P. J. Mol. Struct. 1978, 43, 227.
 (77) Petrova, V. N.; Girichev, G. V.; Petrov, V. M.; Goncharuk, V. K. Zh. Strukt. Khim. 1985, 26, 56.
 (78) Demidov, A. V.; Ivanov, A. A.; Ivashkevich, L. S.; Ischenko, A. A.; Spiridonov, V. P.; Almöf, J.; Strand, T. G. Chem. Phys. Lett. 1979, 64, 528. (79) (a) Sargent, A. L.; Hall, M. B. J. Comput. Chem. 1991, I2, 923. (b) Dobbs, K. D.; Hehre, W. J. Ibid. 1987, 8, 880.
 (80) Beattie, I. R.; Ozin, G. A. J. Chem. Soc. A 1969, 1691.
 (81) (a) Zolliker, P.; Yon, K.; Fischer, P.; Schefer, J. Inorg. Chem. 1985, 24, 4177. (b) Zhuang, J.; Hasting, J. M.; Corliss, L. M.; Bau, R.; Wei, C.-Y.;

[^6]: (82) We should point out that very little difference exists between the optimized geometrical parameters at the HF and MP2 levels for the stationary points. However, a stationary point of $C_{3 v}$ geometry was not found at the HF level.
 (83) (a) Ishida, K.; Morokuma, K.; Konornicki, A. J. Chem. Phys. 1977, 66, 2153. (b) Schmidt, M. W.; Gordon, M. S.; Dupuis, M. J. Am. Chem. Soc. 1985, 107, 2585.
 (84) The Cartesian coordinates and energies for these structures computed at the HF level are available from the authors upon request.
 (85) (a) Ugi, l.; Marquading, D.: Klusacek, H.; Gillespie, P.; Ramirez, F. Acc. Chem. Res. 1971, 4, 288. (b) Muetterties, E. L. J. Am. Chem. Soc. 1969, 91, 4115 . (c) Jesson, J. P.; Meakin, P. Ibid. 1974, 96, 5760 . (d) Meakin, P.; Muetterties, E. L.; Jesson, J. P. Ibid. 1972, 94, 5271.

[^7]: (86) For example, collection of the crystal structures for 18 -electron ML_{5} complexes sample a reaction path that follows Berry pseudorotation: Muetterttes, E. L.; Guggenberger, L. J. J. Am. Chem. Soc. 1974, 96, 1748.
 (87) (a) Muetterties, E. L.; Hirsekorn, I. J. J. Am. Chem. Soc. 1973, 95, 5419. (b) Miller, J. S.; Caulton, K. G. Inorg. Chem. 1975, 14, 2296.

[^8]: (88) (a) Schrock, R. R.: Meakin, P. J. Am. Chem. Soc. 1974, 96, 5288. (b) Schrock, R. R. J. Organomet. Chem. 1976, 122, 209.
 (89) Haaland, A.; Hammel, A.: Rypdal, K.: Verne. H. P.: Volden, H. V.; Pulham, C.; Brunvoll, J.: Weidlein, J.: Greune, M. Angew. Chem. 1992. 104. 1534.
 (90) A preliminary account of $D_{3 h}$ and $C_{4 c}$ structures of TaH_{5} and TaMe_{5} is given in Albright. T. A.: Tang, H. Angew. Chem. 1992. 104. 1532.
 (91) The individual bond lengths and $\mathrm{C}-\mathrm{Ta}-\mathrm{C}$ and $\mathrm{Ta}-\mathrm{C}-\mathrm{H}$ bond angles dilfer by not more than $0.005 \AA, 0.1^{\circ}$, and 0.8°, respectively, in the C_{s} optimized structure.

[^9]: (1) (a) Hulliger, F. In Structural Chemistry of Layer-Type Phases; Levy, F., Ed.: D. Reidel: Dordrecht, 1976. (b) Bronger, W. In Crystallography and Crystal Chemistry of Materials with Layered Structures; Levy, F., Ed.: D. Reidel: Dordrecht, 1976. (c) Rouxel, J. In Intercalated Layer Materials; Levy, F., Ed.: D. Reidel: Dordrecht, 1979. (d) Grasso, V. Electronic Structure and Electronic Transitions in Layered Materials: D. Reidel: Dordrecht. 1986.

[^10]: (2) Trinquier, G.; Hoffmann. R. J. Phys. Chem. 1984, 88, 6696.
 (3) Canadell, E.; Jobic, S.; Brec, R.; Rouxel. J.: Whangbo, M.-H. J. Solid State Chem. 1992, 99, 189 and references therein.

